Exploiting Genetic Variation for Elevated Mineral Concentrations in Potatoes

Nithya Subramanian^{1,2}, Gavin Ramsay¹, Philip White¹ and Martin Broadley²

¹Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA

Why potatoes?

Potato is the 4th world crop in production terms

Most important non-grain food crop.

Important role in the delivery of dietary micronutrients including Fe, Ca, Zn and Mg.

Now promoted as a better staple food for the world's poor.

Bioavailability of minerals is high in potatoes

- high concs of ascorbate.
- low concs of phytate & oxalate.

Materials and methods

Within tuber mineral variation:

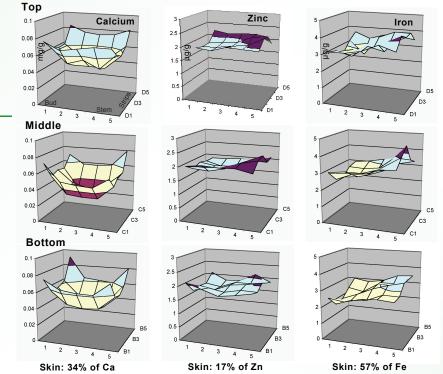
- Five tubers of Solanum tuberosum cv. Stirling.
- Five concentric skin samples.
- Peeled tubers were cut into three slices.
- Each slice diced into five strips.
- Each strip cut into 5 pieces (1-5).

Field replicate and genotype variation:

- Phureja-Tuberosum Core Collection, 64 clones,2 replicates.
- Neotuberosum population, 450 clones, 2 replicates.
- Sampled two pairs of opposite eighths.
- Freeze-dried powder, acid digested and submitted to ICP-MS.

2

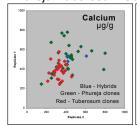
Within tuber mineral variation

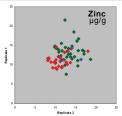

Central portion of the tuber is low in dry matter (10% cf 24% DM).

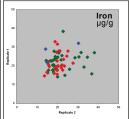
Potato skin contains most iron.

In tuber flesh, calcium is mostly peripheral.

Zinc and iron are higher near the stolon attachment point.

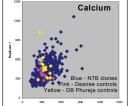




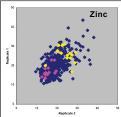


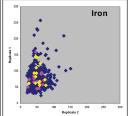
Field replicate and genotype variation

Phureja-Tuberosum Core Collection


Significant mineral variation exists between diploid Phureja and tetraploid Tuberosum clones.

Phureja tends to have higher mineral concs and lower yield.


Neotuberosum (NTB) clones show a greater variation in most minerals and have a broader genetic background.


Weaker correlation between reps for iron, suggesting more environmental influence.

Correlations among minerals at high levels of significance indicates areas for future study.

Neotuberosum Population

Work in Progress

QTL analysis using a tetraploid mapping population Stirling x 12601ab1 underway.

Acknowledgements

²School of Biosciences, University of Nottingham, LE12 5RD, UK